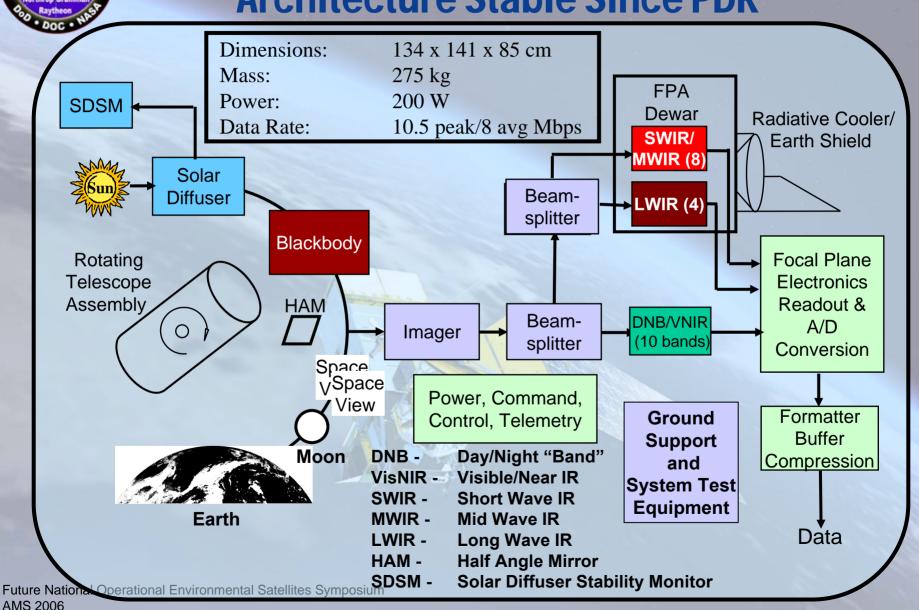
2nd Annual Symposium

Toward a Global Earth Observation System of Systems

Future National Operational Environmental Satellites

Calibration and Verification Activities for NPP/NPOESS VIIRS

B. Guenther¹, F. De Luccia², Eric Johnson³, James Mc Carthy⁴, R. E. Murphy⁵, Xiaoxiong Xiong⁶, James Young³



Introduction (VIIRS)

- Visible Infrared Imager/Radiometer Suite
 - First flight on NPOESS Preparatory Project
 - Key NPOESS sensor
 - 25 Level 2 (Environmental Data Records)
 - 2 Key Performance requirement
 - Basis of "Fire Product," most widely used product from EOS program

Photons to Digital Data: VIIRS Architecture Stable Since PDR

3

MODIS → VIIRS

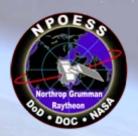
Changes from MODIS requirements:

- Added imaging capability
- Converted nearby bands to dual gain bands
- Removed CO₂ slicing bands (can use CrIS)
- Deleted Spectro-radiometric Calibration Assembly
- Added pixel aggregation approach for near nadir views
- Guaranteed End-Of-Life Performance specifications

Primary Design Differences

- Added Imaging Capability RTA (4 MIRROR ROTATING TELESCOPE ASSEMBLY plus HAM (HALF-ANGLE MIRROR) replaces single scan mirror
- At Nadir, detector FOV 250m square from 250, 500 and 1000m square
- Incorporated 8 dual gain bands
- Solar Differ screen fixed, adding Earthshine shade to repair effect found on MODIS

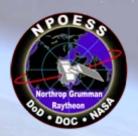
Morthrop Grumman 250 Raytheen CONTROL THE


Reflective Sensor Solar Bands Calibration Requirements

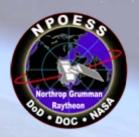
Requirement Title	Requirement Value		
Calibration uncertainty of the reflective, given a uniform scene of typical spectral radiance	Less than 2 %		
Reflectance band calibration in terminator orbit	Less than5 %		
Calibrated output of all channels within a band (sigma = 1)	Match the mean within NeDL		
VIS/NIR/SWIR response uncertainty	Characterized within 3%		

Reflected Solar Bands Calibration Requirements

ì			Single Gain	Dual Gain					
			Single Gain	High Gain		Low Gain			
Center	Gain Type	Ltyp	SNR	Ltyp	SNR	Ltyp	SNR		
Waveleng									
th (nm)									
412	Dual			44.9	352	155	316		
445	Dual			40	380	146	409		
488	Dual			32	416	123	414		
555	Dual			21	362	90	315		
672	Dual			10	242	68	360		
746	Single	9.6	199						
865	Dual			6.4	215	33.4	340		
1240	Single	5.4	74						
1378	Single	6	83						
1610	Single	7.3	342						
2250	Single	0.12	10						
(I) 640	Single	22	119						
(I) 865	Single	25	150						
(I) 1610	Single	7.3	6						


Sensor Thermal Emissive Bands Calibration Requirements

	Scene Temperature						
Center Wavelength (µm)	190K	230 K	270 K	310 K	340 K		
3.7	N.A.	7.0%	7.0%	0.7%	0.7%		
4.05	N.A.	5.7%	0.7%	0.7%	0.7%		
8.55	12.3%	2.4%	0.6%	0.4%	0.5%		
10.763	2.1%	0.6%	0.4%	0.4%	0.4%		
12.013	1.6%	0.6%	0.4%	0.4%	0.4%		


Thermal Emissive Bands Calibration Requirements

		و	ingle Gain	Dual Gain				
		Olligie Galii		High Gain		Low Gain		
Center	Gain Type	Ttyp	NEdT	Ttyp	NEdT	Ttyp	NEdT	
Waveleng th (nm)								
	Single	270	0.396					
4050	Dual	Ĭ		300	0.107	380	0.423	
8550	Single	270	0.091					
10763	Single	300	0.07					
12013	Single	300	0.072					
3740	Single	270	2.5					
11450	Single	210	1.5					

Testing Approaches for Reflected Solar Bands (RSB)

- Spectral radiance calibration with similar sources as MODIS
- Polarization characterization with similar source as MODIS
- Spectral calibration with similar approaches as MODIS

Testing Approaches for Thermal Emissive Bands (TEB)

- Spectral radiance calibration with similar sources as MODIS
- Spectral calibration with essentially similar approaches as MODIS
- HAM Response versus Scan Angle (RVS) characterized similar manner to MODIS

Selected Approaches for Verification

- RSB verification still under investigation.
 Ozone column, sounder experience suggests End_to_end (E2E) test coupled with Solar Diffuser BRF. E2E test still under consideration
- TEB verification plans same as MODIS, RVS of HAM witness samples and direct ambient RVS measurements

Status

- Engineering Development Unit:
 - Nearing completion
 - Comprehensive Ambient Testing Complete
- Flight Unit 1 scheduled for NPP mission
 - Focal Plane Assemblies all delivered
 - Comprehensive testing begins after EDU tests

Conclusions

- Program design for VIIRS based on strong MODIS heritage
 - MODIS research program
 - VIIRS operational program, guaranteed performance, end of life performance specifications
- Development of similar engineering and performance requirements proves to be valid
- Accomplish detailed engineering, performance for VIIRS more difficult than expected

National Polar-orbiting Operational Environmental Satellite System